Hypergeometric 3f 2(1/4) Evaluations over Finite Fields and Hecke Eigenforms

نویسنده

  • RON EVANS
چکیده

Let H denote the hypergeometric 3F2 function over Fp whose three numerator parameters are quadratic characters and whose two denominator parameters are trivial characters. In 1992, Koike posed the problem of evaluating H at the argument 1/4. This problem was solved by Ono in 1998. Ten years later, Evans and Greene extended Ono’s result by evaluating an infinite family of 3F2(1/4) over Fq in terms of Jacobi sums. Here we present five new 3F2(1/4) over Fq (involving characters of orders 3, 4, 6, and 8) which are conjecturally evaluable in terms of eigenvalues for Hecke eigenforms of weights 2 and 3. There is ample numerical evidence for these evaluations. We motivate our conjectures by proving a connection between 3F2(1/4) and twisted sums of traces of the third symmetric power of twisted Kloosterman sheaves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hardness of Computing an Eigenform Eric Bach and Denis Charles

The Fourier coefficients of modular forms encode very interesting arithmetic data. For example, divisor sums, partition numbers, trace of Frobenius of the reduction modulo primes of an elliptic curve over Q, and more generally, trace of Frobenius of many Galois representations of dimension 2 over finite fields (this being a conjecture of Serre) are all known to be, or conjectured to be, Fourier...

متن کامل

Lecture 16: Review of representation theory

• The theory of admissible representations of GL(2,Qp) (or more generally, GL(2, F ) with F/Qp a finite extension). • The theory of automorphic representations of GL(2); in particular, the correspondence between Hecke eigenforms in the classical sense and automorphic representations. • The Jacquet-Langlands correspondence, relating automorphic forms on GL(2) with those on a division algebra. • ...

متن کامل

Fourier Coefficients of Hecke Eigenforms

We provide systematic evaluations, in terms of binary quadratic representations of 4p, for the p-th Fourier coefficients of each member f of an infinite class C of CM eigenforms. As an application, previously conjectured evaluations of three algebro-geometric character sums can now be formulated explicitly without reference to eigenforms. There are several non-CM newforms that appear to share s...

متن کامل

Congruence Properties of Siegel Modular Forms

Let X35 be a Siegel cusp form of degree 2 and weight 35. Kikuta, Kodama and Nagaoka [4] proved that det T a(T, X35) ≡ 0 mod 23 for every half integral positive symmetric matrix T . In this paper, we give a finite number of examples of Hecke eigenforms of degree 2 and odd weights that have the same type of congruence relation above. We also introduce congruence relations for the Hecke eigenvalue...

متن کامل

The Manin Constant of Elliptic Curves over Function Fields

We study the p-adic valuation of the values of normalised Hecke eigenforms attached to non-isotrivial elliptic curves defined over function fields of transcendence degree one over finite fields of characteristic p. We derive upper bounds on the smallest attained valuation in terms of the minimal discriminant under a certain assumption on the function field and provide examples to show that our ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009